•  
  •  
 

Keywords

faulty feeder selection, resonant grounding system, single-phase-grounding fault, phase-to-phase current mutation

Abstract

In order to improve the accuracy of faulty feeder selection when the single-phase-grounding fault occurs in a resonant earthed system, the distribution features of phase-to-phase current in both faulty lines and non-faulty lines are analyzed in detail. It is found that in a small fault resistance rather than a high fault resistance, there is a significant difference between the variation of phase-to-phase current in faulty feeder and non-faulty feeder. If the compensation degree of arc-suppression coil is adjusted after the occurrence of the fault, the mutation of phase-to-phase transient current would be equal to the change of zero-sequence inductor current, which is more overt in the case of high impedance grounding faults. Therefore, a non-setting faulty line selection method is proposed, which integrates the mutation features of phase-to-phase current mutation in each line with compensation adjustment after the fault. The fault feature distance can also be defined by Euclidean distance so that the line with maximum value can be distinguished as the faulty line. Simulation results show that the proposed criteria requires no setting, and can fit in the scenarios with high transition resistance orsmall inception angle fault.

DOI

10.19781/j.issn.1673-9140.2022.02.006

First Page

47

Last Page

53

Share

COinS