•  
  •  
 

Keywords

distribution network, fault section location, Hausdorff Distance, wavelet packet transform, zero sequence current deviation matrix

Abstract

In order to cope with the difficulty in locating the fault section when single-phase-to-ground fault occurs in the small current grounding system of a distribution network, this paper proposes a fault section location method based on the Hausdorff Distance algorithm according to the characteristics that the zero sequence currents on both sides of the fault point are opposite in the fault line. In this method, the zero sequence current is selected as the fault feature firstly, and is then filtered to ensure the wavelet approximate sequence of the zero sequence current of each detection node of the fault feeder can be extracted by wavelet packet transform. Next, the deviation matrix of the wavelet approximate sequence of the zero sequence current among each detection node is obtained by Hausdorff Distance algorithm. Finally, a deviation degree is defined to represent the difference between the two sides of each section, and the fault section can thus be determined by comparing the relevant deviation degree. The simulation results show that the method can achieve precise positioning under different fault conditions, and it is also suitable for more complex distribution network structures. Both of which are convenient for staff to quickly repair and maintain the fault lines, and ensure the safe and reliable operation of power systems.

DOI

10.19781/j.issn.1673-9140.2022.05.013

First Page

115

Last Page

123

Share

COinS