Keywords
hydrogen doping; two-stage p2g; stepped carbon trading; demand response; integrated rural energy system
Abstract
Building clean and efficient integrated rural energy systems is of great significance to the comprehensive promotion of the rural revitalization strategy, an integrated energy system operation model with hydrogen mixing-carbon capture coupling is constructed, and a low-carbon economic scheduling strategy that takes into account the parameter-adaptive stepped carbon trading and stepped incentive-based demand response is proposed in this paper. Firstly, a refined model of gas-fired units after hydrogen doping reform is established, and two-stage electricity-to-gas conversion, carbon capture technologies are integrated to form a coupled hydrogen mixing-carbon capture operation mode; secondly, stepped incentive demand response is introduced to promote the transformation of users' energy use and alleviate the pressure of energy supply during the peak load period of the integrated energy system; finally, a step carbon trading mechanism is introduced to construct an operation optimization model with the aim of minimizing the operating cost, and CPLEX is adopted to optimize the operation mode of the integrated energy system. Finally, the stepped carbon trading mechanism is introduced and the operation model is constructed with the goal of minimizing the system operation cost, and the CPLEX is used to solve the model, while the total carbon emission is calculated to minimize the carbon emission as the optimization goal of the parameters of the carbon trading mechanism, and the particle swarm algorithm is used for finding the optimal parameters of the optimal carbon trading mechanism and the operation strategy. By setting different scenarios for comparison, it is verified that the proposed scheduling strategy can effectively reduce carbon emissions and realize economic operation.
DOI
10.19781/j.issn.1673-9140.2024.03.025
First Page
228
Last Page
241
Recommended Citation
ZHANG, Linyao; WU, Guilian; NI, Shiyuan; LIN, Kun; and LIU, Lijun
(2024)
"Optimal scheduling of an integrated rural energy system with coupled hybrid hydrogen‑carbon capture considering parameter adaptive stepped carbon trading,"
Journal of Electric Power Science and Technology: Vol. 39:
Iss.
3, Article 25.
DOI: 10.19781/j.issn.1673-9140.2024.03.025
Available at:
https://jepst.researchcommons.org/journal/vol39/iss3/25